Double covers of cubic graphs with oddness 4

نویسندگان

  • Roland Häggkvist
  • Sean McGuinness
چکیده

We prove that a cubic 2-connected graph which has a 2-factor containing exactly 4 odd cycles has a cycle double cover. © 2004 Elsevier Inc. All rights reserved. MSC: 05C38; 05C40; 05C70

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Even cycle decompositions of 4-regular graphs and line graphs

An even cycle decomposition of a graph is a partition of its edge into even cycles. We first give some results on the existence of even cycle decomposition in general 4-regular graphs, showing that K5 is not the only graph in this class without such a decomposition. Motivated by connections to the cycle double cover conjecture we go on to consider even cycle decompositions of line graphs of 2-c...

متن کامل

Weak oddness as an approximation of oddness and resistance in cubic graphs

We introduce weak oddness ωw, a new measure of uncolourability of cubic graphs, defined as the least number of odd components in an even factor. For every bridgeless cubic graph G, %(G) ≤ ωw(G) ≤ ω(G), where %(G) denotes the resistance of G and ω(G) denotes the oddness of G, so this new measure is an approximation of both oddness and resistance. We demonstrate that there are graphs G satisfying...

متن کامل

On the smallest snarks with oddness 4 and connectivity 2

A snark is a bridgeless cubic graph which is not 3-edge-colourable. The oddness of a bridgeless cubic graph is the minimum number of odd components in any 2factor of the graph. Lukot’ka, Mácajová, Mazák and Škoviera showed in [Electron. J. Combin. 22 (2015)] that the smallest snark with oddness 4 has 28 vertices and remarked and that there are exactly two such graphs of that order. However, thi...

متن کامل

Shortest cycle covers and cycle double covers with large 2-regular subgraphs

In this paper we show that many snarks have shortest cycle covers of length 43m + c for a constant c, where m is the number of edges in the graph, in agreement with the conjecture that all snarks have shortest cycle covers of length 43m+ o(m). In particular we prove that graphs with perfect matching index at most 4 have cycle covers of length 4 3m and satisfy the (1, 2)-covering conjecture of Z...

متن کامل

Nowhere-Zero 5-Flows On Cubic Graphs with Oddness 4

Tutte’s 5-Flow Conjecture from 1954 states that every bridgeless graph has a nowhere-zero 5-flow. In 2004, Kochol proved that the conjecture is equivalent to its restriction on cyclically 6-edge connected cubic graphs. We prove that every cyclically 6-edge-connected cubic graph with oddness at most 4 has a nowhere-zero 5-flow.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 93  شماره 

صفحات  -

تاریخ انتشار 2005